Principles and Practices of Fining Wines T.E. STEINER DEPT. of Horticulture and Crop Sciences The Ohio State University/OARDC Wooster, Ohio 44691 #### THANK YOU! - 2015 Cold Climate Conference (CCC) - * Josie Boyle - * Initial Contact - Missy Machkhashvili & Amy Beckham - * Organization and information contact - * Conference Organizing Committee #### Outline - Brief Description on Wine Stabilization - * Chemical & Microbial - Fining Definition, Goals and Steps - Fining Agent Descriptions & Information - * Common Additives - Cellar Applications #### Wine Stabilization - * Chemical - * Cold Stabilization - * Heat Stability - * Heavy Metals - * Microbial - * Yeast - * Fermentative - * Film - * Brettanomyces - * Acetic Acid Bacteria - * Lactic Acid Bacteria # Fining Can help aid in wine stabilization ## Fining: Definition & Goals - * Broad definition: - * To become pure or clean - * In wine: - * To add an absorptive or reactive substance to reduce or remove the concentration of one or more undesirable products - * To aid in producing a product that is near perfect in terms of taste, color, bouquet and clarity # Fining: Definition & Goals - * The fining method should not take away from these attributes (taste, color, bouquet and clarity) but bring them together in expressing varietal character as much as possible - * Can be as simple as letting nature and time take its course or actively adding and assortment of fining agents at our exposure - * This depends entirely on the individual must/wine and its components in addition to suspected time of bottling in meeting consumer demand ## Reasons for Fining - * Aroma: - * H2S, oxidation, off varietal aroma, slightly flawed - * Color: - Intensity, browning - * Flavor: - * Bitterness, astringency, off-balance - * Palate: - * Harsh (round and soften, improve phenolic profile) - * Haze: - Protein, heavy metals - * Cold stabilize ## Factors Improving Fining Action - Low carbon dioxide (impedes fining and settling) - * Warm temperatures - * Simply warming a wine up in some cases can help settle out and clarify a wine (except protein instability) - * Lower pH wines require less clarification time - * A high metal content can affect fining efficiency - * Young wines are more forgiving in protein fining - * Dry wines - Clarified wines ## Essential Steps in Fining Wine - Sensory evaluation - * Chemical Analysis - * pH, TA, VA, SO₂, alcohol, heat stability, cold stability, % R.S. etc... - * Laboratory trials - Cellar application #### Sensory Evaluation - * Perform sensory evaluation in a clean aroma free atmosphere with good lighting and a white background - * Examine wine subjectively - * Involve other evaluators - Know the varietal or blend characteristics - * Identify shortcomings: - Taste alongside benchmark Wines #### **Chemical Analysis** - * Many times chemical analysis will back up sensory results - * Help isolate or troubleshoot problem areas for fining treatments #### Laboratory Trials - * Pipette, 5-10 ml graduated in 0.1 mls - * Several 100 ml graduated cylinders - * Numerous identical wine glasses - * Magic marker (Sharpie) - * Glassware Beakers for fining tests - * Gram scales - * Calculator, pad and pencil - * Fining tech sheets and lab trial procedures #### **Laboratory Trials** - * Prepare fining agents according to manufactures directions - * Use at least 200 ml of clarified wine - * Include a control sample with not treatment - * Evaluate wines blind in sensory room environment - * Avoid any bias that treatment is or is not working ## Classes of Fining Agents - Earths: bentonite, Kaolin (-) - Proteins: gelatin, isinglass, casein, albumin (+) & hydrogen bond activity - * Polysaccharides: Sparkalloid, Klear-mor (+) & repulsion - * Activated Carbons (adsorption) - * Synthetic polymers: PVPP, nylon Hydrogen bond - * Silicon dioxide: Nalco 1072, Keiselsol (-) - * Others: metal chelators, enzymes, etc. # Addition Preference of Fining Agents - Copper and Iron treatments - * Aroma - * Acid adjustments (if necessary) - Mouthfeel tannin/phenolics - * Protein reduction - * Clarification and color - * Cold stability ## Commonly Used Fining Agents - * Potassium Caseinate - * PVPP - * Yeast - * Activated Carbon - * CuSO₄ - * Bentonite - * Isinglass - * Gelatins - Egg Albumin #### Commonly Used Additives - * Acids (tartaric, malic & citric) - Deacidifying agents (KHCO₃ & CaCO₃) - * Tannins - * Oak - * Sugar - * Concentrates # General Activity of Various Fining Agents | Color | Aroma | Flavor | Texture | |-----------|-----------|----------|--------------| | * Casein | Copper | * Acid | Tannins | | * PVPP | Casein | * Sugar | Egg Albumins | | * Gelatin | Yeast | * Conc. | Gelatin | | * Yeast | Isinglass | * Carbon | Isinglass | | * Carbon | Carbon | * Sugar | Yeast | | * Enzymes | Enzymes | * | Sugar | | | | * | PVPP | | | | * | Carbon | #### * Appearance: Protein precipitation appears as an amorphous haze flocculation or deposit #### * Cause: - * Protein instability occurs predominately in white Vinifera wines - * Red wines cause no concern due to tannins forming a complex with protein causing precipitation - * Factors influencing protein precipitation - * Protein instability is difficult to predict due to factors such as cultivar, maturity, climate, electrical charge and interaction with other wine components - * Heat, shaking, heavy metals and ultraviolet light have been known to precipitate out proteins - Proteins present in wine ranging from 0–100 ppm - * The total protein concentration poorly correlates with instability - * Not all proteins are unstable - * Proteins can be positive, negative and neutrally charged #### **EXAMPLE** - * Protein Fraction A - * Protein Fraction B - * Protein Fraction C - * Isoelectric Point 3.2 - * Isoelectric Point 3.4 - * Isoelectric Point 3.6 #### Bentonite - * Claylike material of volcanic origin - Flat surface (-) charged attracts (+) charged proteins - * Acts like a deck of cards - * Come in both sodium and calcium for wine use - Sodium: hydrates best with more reactive sites making it more efficient (requires more time to settle) - * Calcium: less efficient but compacts better - Combination of two a possibility #### Bentonite - * Both hot and cold mix bentonite solutions available - * If adding to must/juice, determine YAN content prior to fermentation for correct nutrient additions since bentonite can strip some available nitrogen - Bench trials should be performed to determine minimal levels required especially to post fermented wine - * Addition of 2 8 lbs / 1000 gallons can be added to the juice or wine #### * Appearance: * Formation of crystalline deposits #### * Cause: - * Tartaric acid and its salts potassium bitartrate (KHT) and calcium tartrate naturally occur in grape juice and wine - * Newly fermented wines are supersaturated with cream of tarter and unless removed during the making of wine, the formation of crystalline deposits will form in bottled wine - Factors influencing KHT precipitation - * Starts in the vineyard with the uptake of potassium in the soil through the roots - * After veraison starts concentrating in the fruit including tartaric acid - * The formation of potassium and tartaric acid depend on factors such as soil type, rootstock, irrigation, variety, etc... - * Factors influencing KHT precipitation - * The production of alcohol during fermentation lowers the solubility leading towards a supersaturated solution - * Precipitation occurs in two stages with the formation of nuclei and the formation of a crystal lattice structure - The crystals have active binding sites - Solubility of KHT varies with temperature, pH, alcohol content, acids, ions, pigments, mannoproteins and tannins - Factors influencing KHT precipitation - * These compounds can bind the active sites of the crystals and slow or stop crystal formation - * Red wines generally require longer cold stabilization times then white wines - * All acid adjustments, blending and fining trials should be made before cold stabilization - Wines settled, clarified with bentonite and filtered will typically have faster rates - * The three most common methods of KHT removal - * Mother Nature - * Chilling - Contact seeding - * Additional methods - * Ion exchange - * Electrodialysis - * CMC & Mannoproteins - Chilling for KHT removal - Arguably the most common method for KHT removal - * Subjecting wine to temperatures of 15 to 35°F for up to several weeks - * Wine should be filtered cold after cold stabilization to prevent KHT from going back into solution - Chilling for KHT removal - * Although this can be effective, fluctuations in temperature can have a significant impact on nuclei formation and slow crystal growth (Mother nature) - * With increased time at lower temperatures oxygen will absorb more rapidly causing oxidation to be a concern - Contact Seeding for KHT Removal - * An effective way of cold stabilization through seeding with KHT crystals - * Addition of finely ground KHT powder providing more surface area in promoting faster nuclei formation and crystal growth - * Can also speed up refrigeration time - Contact Seeding for KHT Removal - * Add KHT crystals to chilled wine under a nitrogen or CO2 blanket - * The addition of 2-10 lbs per 1000 gallons can reduce cold stabilization times to 3-5 days - * The addition of 15-20 lbs per 1000 gallons can reduce cold stabilization times to 3-5 hours - Contact Seeding for KHT Removal - * Benefits from lower energy costs in significantly shortening stabilization period - Cost effectiveness needs to be looked at when choosing higher amounts of KHT - * KHT crystals can be recovered, washed and used again up to 5 times before grinding - * CMC: Carboxymethyl Cellulose and Mannoproetein - * Fairly new procedures that do not require cold stabilization to work - * Both work on impeding further nuclei formation (CMC) or altering crystalline growth structure (mannoprotein) preventing it from occurring - * A few specific requirements prior to CMC or Mannoprotein use for KHT stabilization - * Wine needs to be protein stable - * conductivity checks essential to help determine KHT saturation temperature for correct dosage - * Needs to be blend / bottle ready - * No acid adjustments or additives - * Was Lysozyme Used? (procedure dependent) - * Pass filterability - Other wine matrix specifics required - * Check with manufacturer's requirements - * Combination with light cold stability procedures or lower amounts of contact seeding along with use of CMC or Mannoprotein may provide better stability results than cold stabilization itself ### KHT Laboratory Procedures - * Three tests for checking cold stability - * Moderate refrigeration test - * Severe refrigeration test - * Conductivity test #### **Activated Carbon** - Removes color and aroma - * Oxidative due to large quantity of air in carbon - Adjust free SO₂ levels prior to fining - * Add dry Instant reaction - * Bentonite or PVPP counter fining recommended after carbon treatment, rack and filter - * Use as last resort - * Usage rate: 0.5 3 lbs/1000 gal (6-48 g/hL) ### Albumen - * Fresh or frozen egg whites (fresh more effective) - Colloidal in nature with positively charged surface - * Reduces harsh and aggressive tannins (-) charged - * Soften mouthfeel - * Added directly to barreled red wines or more easily to same wine in SS tank - * Appears to remove less fruit (stripping) character than gelatin fining ### Albumen - * Not typically used in white wines due to lack of tannin creating potential protein instability issues - * If egg whites are diluted with water, a pinch of salt is essential - * Standard practices of using from 1 8 egg whites per 60 gal barrel (2 4) being average - * Refer to TTB limitation on addition of working solution due to KCL and water # Casein (Milk Protein) - * Potassium Caseinate: Kolorfine, Vinpur - * White Powder easily dispersed in wine - * Flocculates, settles removing colloidal particles - * Binds to Leucoanthocyanidins - Great for removing brown hues/tones - * Removes oxidative odors # Casein (Milk Protein) - Reported to remove some copper as well - * Freshens overall fruit attributes - * May be used to soften tannins in red wines - * Usage rate .2 2 lbs/1000 gal - * Can also counter fine with Silica Dioxide - * Kieselsol, Nalco - * Allow to settle, rack and filter after 2 4 hours or more depending on volume being fined # CuSO₄ - Reacts with H₂S (hydrogen sulfide) which can mask varietal character at low levels and contribute rotten egg to rubber type aromas at higher concentrations - * Reaction forms CuS (Copper Sulfide) as a precipitate - Comes in blue powder or liquid (CuSO₄ x 5 H₂O) - * Determine lowest- effective concentration by performing bench trials - Use 1% solution added directly to wine while mixing # CuSO₄ - * Residual copper is a catalyst for oxidative reactions and haze formation - * Haze formation possible at levels > .3 ppm - * Use yeast, bentonite or potassium caseinate to fine excess copper - * TTB legal limit is 0.5 ppm (lab test) ### Gelatin - * Prepared from collagen structural protein derived from animal skin and bones - * Purchased as a granular powder or liquid - Exists in wine pH as (+) charged - * Removes astringency by reacting with tannins in red wines to soften mouthfeel - * Also used in white juice for removing phenols and brown color - * Can be used for clarification of white and red wines ### Gelatin - * Commercial gelatin usually rated by bloom - Refers to the ability to absorb water - * Higher the bloom number = greater absorbing capacity - * Bloom of 75 100 acceptable for wine - * May desire to counterfine with silica dioxide - * Hydrate dry gelatin by stirring 1 lbs gelatin into 2 gal of water (112 °F) - Usage level varies by preparation and purpose - * 0.2 0.8 lbs/1000 gals care taken not to over fine # Isinglass - Complex protein collagen derived from fish bladders - * Comes in pre-hydrolyzed and fibrous form of flocced Isinglass (+) - * Does not require tannin to act in wine - * Prepare in cold water (50 °F) and keep cold - * Affects phenolics and aromatics especially in whites # Isinglass - Thought to have less stripping effect than gelatin or casein - * Also used as riddling aid in sparkling wine - * May benefit from being counter-fined with bentonite or silica to help reduce lees and speed settling - * Usage rate typically varies from 0.2 0.5 lbs/1000 gals - * Typically takes 1 2 weeks, rack and filter ## Polysaccharides - * Alginates extracted from brown algae bound to diatomaceous earth (Sparkalloid, Kear-Mor) - Positively charged and work best in wine pH < 3.5 - * Primary function of enhancing clarity and filtration - * Excellent clarification option when other fining agents have not worked efficiently - * Hot or cold mix preparations available - * Hot more efficient in clarification of wines # Polysaccharides - * White granular material prepared by hydration in hot water (180 °F) addition rate of 1 8 lbs/ 1000 gal - Add hot mix slowly to wine with continued stirring for 15 20 minutes - * Allow to settle from several days to a few weeks - * Rack and filter - * Often added soon after bentonite addition as wine is being moved to cold stabilization #### **PVPP** - Synthetic protein like material (fine granular) - * Sold as Polyclar® - * Complexes with phenolic and polyphenolic components by absorption collecting low molecular weight catechins (hydrogen bond formation) - * Removes bitter compounds along with off colors - * Reduces potential for browning - * Helps stabilize Rosé / Blush wines #### **PVPP** - * Useful in helping to settle carbon treatments - * Usage rate ranges from 0.5 6 lbs/1000 gals - Make 5 10% solution in wine or water and add directly to wine while stirring for approximately 30 minutes - * Settle, rack and must filter - * TTB legal limit of 6 lbs/1000 gallons ### Silica Dioxide - Silica Dioxide silica gel and Kieselsol - * Use as a substitute for tannic acid addition in gelatin fining to initiate flocculation and settling of gelatin and protein add prior to gelatin - * More commonly used for clarification in protein fining treatments (bentonite) ### Silica Dioxide - * Limited shelf life of less then 2 years - Dosage rate rarely exceeds 10 lbs/1000 gals - * Rack and filter all silica dioxide out of wine - * TTB legal limit equivalent of 20 lbs colloidal silicon dioxide at a 30% concentration /1000 gals #### Yeast - Reported to remove some copper and iron - * Reduces brown oxidative hues - * Can reverse some oxidation in aroma and on palate - * Known to "freshen" up a wine - Also indicated to remove herbaceousness and other off odors such as ethyl acetate - * Removes astringent tannins (especially oak tannin) #### Yeast - May use rehydrated yeast or freeze dried added directly to wine - * Yeast high in mannoproteins good choice (D254) - * Usage rate ranges from 1.5 8 lbs/1000 gals - Average optimum concentration of 2-4 lbs/1000 gals - * Monitor effect, rack and filter once noticeable changes have been diagnosed - * May take several days to a couple of weeks # Additives #### Additives - * Acids (tartaric, malic & citric) - Deacidifying agents (KHCO₃ & CaCO₃) - * Tannins - * Oak - * Sugar - * Concentrates #### **Acid Additions** - * Adjust acid perception on palate - * Adjust pH (important enological factor) - * Effects perception of tannin and astringency - Effects cold stability - * Tartaric acid most commonly used - * Citric acid can be utilized at lower levels for enhanced fruit structure in aged white wines #### Tartaric Acid Addition - * Preferred for addition to must over malic and citric acid. - * Tartaric acid is a stronger acid. - * Lowers the pH of must during fermentation. - * Excess citric acid may effect organoleptic profile. - * Malic and citric acid can be metabolically utilized by microorganisms. #### Cool Climate Viticulture Areas * Excess acidity at harvest may occur in cool climate viticultural areas requiring deacidification of the must or juice. ## Excess Harvest Acidity - * Common for cool climate viticultural areas. - * Viticultural practices over cropping, unorganized spray program, etc... - * Vine vigor high vigorous vines typically produce higher acidities. - * Excess acidity may require deacidification. #### Methods of Deacidification - * Amelioration - Chemical neutralization and precipitation of tartrates - * Choosing an acid reducing yeast strain - Anion exchange - * Performing a Malolactic Fermentation - * Blending - Sugar Addition # **Enological Tannins** - * Many new tannins available on the market today with a broad range of action - Fermentation, cellaring and finishing - Especially good for hybrid red wines - * Can enhance mouthfeel, lower perceived astringency, help assist protein stability and aid in color extraction - * Can also be used with gelatin to enhance clarification - * Follow manufacturers suggested dosage rates ### Oak - * Barrels All types (species), options, toast levels and producer's available - * A plethora of oak alternatives and producer's on the market today with good results - * Enhance mouthfeel, provide subtle nuances and increase complexity to varietal aroma's and blend characteristics - * Please do not over oak!!! - * It takes expertise to integrate varietal character and oak nuance's correctly together #### Concentrates - Can add flavor, sweetness and enhance mouthfeel - Good for fine tuning wines - * Also utilize juice reserve for these purposes - * Watch for Zygosaccharomyces in fruit concentrates which normal SO₂ levels are not effective - * TTB regulations indicate only using "like" fruit concentrates except formula wine ## Sugar - * The power of a little sugar in finishing a dry wine goes along way! - * Add up to 0.5% residual sugar in balancing acid profile, smoothing out slightly harsh tannins and lowering perceived astringency - * Laboratory trials are critical in determining optimum concentration - * May need to follow sterile filtration protocols # Cellar Applications - * Commercial companies such as Scott Laboratories have nice laboratory size fining trial packets available with good directions for cellar applications - * Perform laboratory trials and cellar applications the same: Fining agent, preparation methods, temperature, mixing and timing are all critical - * The difference between mixing with a blender in the lab and a paddle mixer in the cellar results in over fining # Cellar Applications - * Effectiveness of fining can be reduced by 50% due to improper preparation methods - * Entire volume of wine must come into contact with fining agent as it is being added - * Limit contact time to minimum amount required to perform purpose efficiently - * Proteinaceous fining agents work better at colder temperatures (except bentonite) #### THANK YOU! **Todd Steiner** Enology Outreach Program Manager & Outreach Specialist OSU/OARDC Dept. Of Horticulture & Crop Science Phone: (330) 263-3881 E-mail: steiner.4@osu.edu