# Principles and Practices of Fining Wines

T.E. STEINER

DEPT. of Horticulture and Crop Sciences
The Ohio State University/OARDC
Wooster, Ohio 44691

#### THANK YOU!

- 2015 Cold Climate Conference (CCC)
- \* Josie Boyle
  - \* Initial Contact
- Missy Machkhashvili & Amy Beckham
  - \* Organization and information contact
- \* Conference Organizing Committee

#### Outline

- Brief Description on Wine Stabilization
  - \* Chemical & Microbial
- Fining Definition, Goals and Steps
- Fining Agent Descriptions & Information
- \* Common Additives
- Cellar Applications

#### Wine Stabilization

- \* Chemical
  - \* Cold Stabilization
  - \* Heat Stability
  - \* Heavy Metals

- \* Microbial
  - \* Yeast
    - \* Fermentative
    - \* Film
    - \* Brettanomyces
  - \* Acetic Acid Bacteria
  - \* Lactic Acid Bacteria

# Fining

Can help aid in wine stabilization

## Fining: Definition & Goals

- \* Broad definition:
  - \* To become pure or clean
- \* In wine:
  - \* To add an absorptive or reactive substance to reduce or remove the concentration of one or more undesirable products
  - \* To aid in producing a product that is near perfect in terms of taste, color, bouquet and clarity

# Fining: Definition & Goals

- \* The fining method should not take away from these attributes (taste, color, bouquet and clarity) but bring them together in expressing varietal character as much as possible
- \* Can be as simple as letting nature and time take its course or actively adding and assortment of fining agents at our exposure
  - \* This depends entirely on the individual must/wine and its components in addition to suspected time of bottling in meeting consumer demand

## Reasons for Fining

- \* Aroma:
  - \* H2S, oxidation, off varietal aroma, slightly flawed
- \* Color:
  - Intensity, browning
- \* Flavor:
  - \* Bitterness, astringency, off-balance
- \* Palate:
  - \* Harsh (round and soften, improve phenolic profile)
- \* Haze:
  - Protein, heavy metals
- \* Cold stabilize

## Factors Improving Fining Action

- Low carbon dioxide (impedes fining and settling)
- \* Warm temperatures
  - \* Simply warming a wine up in some cases can help settle out and clarify a wine (except protein instability)
- \* Lower pH wines require less clarification time
- \* A high metal content can affect fining efficiency
- \* Young wines are more forgiving in protein fining
- \* Dry wines
- Clarified wines

## Essential Steps in Fining Wine

- Sensory evaluation
- \* Chemical Analysis
  - \* pH, TA, VA, SO<sub>2</sub>, alcohol, heat stability, cold stability, % R.S. etc...
- \* Laboratory trials
- Cellar application

#### Sensory Evaluation

- \* Perform sensory evaluation in a clean aroma free atmosphere with good lighting and a white background
- \* Examine wine subjectively
  - \* Involve other evaluators
- Know the varietal or blend characteristics
- \* Identify shortcomings:
  - Taste alongside benchmark Wines

#### **Chemical Analysis**

- \* Many times chemical analysis will back up sensory results
- \* Help isolate or troubleshoot problem areas for fining treatments

#### Laboratory Trials

- \* Pipette, 5-10 ml graduated in 0.1 mls
- \* Several 100 ml graduated cylinders
- \* Numerous identical wine glasses
- \* Magic marker (Sharpie)
- \* Glassware Beakers for fining tests
- \* Gram scales
- \* Calculator, pad and pencil
- \* Fining tech sheets and lab trial procedures

#### **Laboratory Trials**

- \* Prepare fining agents according to manufactures directions
- \* Use at least 200 ml of clarified wine
- \* Include a control sample with not treatment
- \* Evaluate wines blind in sensory room environment
  - \* Avoid any bias that treatment is or is not working

## Classes of Fining Agents

- Earths: bentonite, Kaolin (-)
- Proteins: gelatin, isinglass, casein, albumin (+) & hydrogen bond activity
- \* Polysaccharides: Sparkalloid, Klear-mor (+) & repulsion
- \* Activated Carbons (adsorption)
- \* Synthetic polymers: PVPP, nylon Hydrogen bond
- \* Silicon dioxide: Nalco 1072, Keiselsol (-)
- \* Others: metal chelators, enzymes, etc.

# Addition Preference of Fining Agents

- Copper and Iron treatments
- \* Aroma
- \* Acid adjustments (if necessary)
- Mouthfeel tannin/phenolics
- \* Protein reduction
- \* Clarification and color
- \* Cold stability

## Commonly Used Fining Agents

- \* Potassium Caseinate
- \* PVPP
- \* Yeast
- \* Activated Carbon
- \* CuSO<sub>4</sub>

- \* Bentonite
- \* Isinglass
- \* Gelatins
- Egg Albumin

#### Commonly Used Additives

- \* Acids (tartaric, malic & citric)
- Deacidifying agents (KHCO<sub>3</sub> & CaCO<sub>3</sub>)
- \* Tannins
- \* Oak
- \* Sugar
- \* Concentrates

# General Activity of Various Fining Agents

| Color     | Aroma     | Flavor   | Texture      |
|-----------|-----------|----------|--------------|
| * Casein  | Copper    | * Acid   | Tannins      |
| * PVPP    | Casein    | * Sugar  | Egg Albumins |
| * Gelatin | Yeast     | * Conc.  | Gelatin      |
| * Yeast   | Isinglass | * Carbon | Isinglass    |
| * Carbon  | Carbon    | * Sugar  | Yeast        |
| * Enzymes | Enzymes   | *        | Sugar        |
|           |           | *        | PVPP         |
|           |           | *        | Carbon       |

#### \* Appearance:

 Protein precipitation appears as an amorphous haze flocculation or deposit

#### \* Cause:

- \* Protein instability occurs predominately in white Vinifera wines
- \* Red wines cause no concern due to tannins forming a complex with protein causing precipitation

- \* Factors influencing protein precipitation
  - \* Protein instability is difficult to predict due to factors such as cultivar, maturity, climate, electrical charge and interaction with other wine components
  - \* Heat, shaking, heavy metals and ultraviolet light have been known to precipitate out proteins

- Proteins present in wine ranging from 0–100 ppm
- \* The total protein concentration poorly correlates with instability
  - \* Not all proteins are unstable
- \* Proteins can be positive, negative and neutrally charged

#### **EXAMPLE**

- \* Protein Fraction A
- \* Protein Fraction B
- \* Protein Fraction C

- \* Isoelectric Point 3.2
- \* Isoelectric Point 3.4
- \* Isoelectric Point 3.6









#### Bentonite

- \* Claylike material of volcanic origin
  - Flat surface (-) charged attracts (+) charged proteins
  - \* Acts like a deck of cards
  - \* Come in both sodium and calcium for wine use
  - Sodium: hydrates best with more reactive sites making it more efficient (requires more time to settle)
  - \* Calcium: less efficient but compacts better
  - Combination of two a possibility

#### Bentonite

- \* Both hot and cold mix bentonite solutions available
- \* If adding to must/juice, determine YAN content prior to fermentation for correct nutrient additions since bentonite can strip some available nitrogen
- Bench trials should be performed to determine minimal levels required especially to post fermented wine
- \* Addition of 2 8 lbs / 1000 gallons can be added to the juice or wine

#### \* Appearance:

\* Formation of crystalline deposits

#### \* Cause:

- \* Tartaric acid and its salts potassium bitartrate (KHT) and calcium tartrate naturally occur in grape juice and wine
- \* Newly fermented wines are supersaturated with cream of tarter and unless removed during the making of wine, the formation of crystalline deposits will form in bottled wine

- Factors influencing KHT precipitation
  - \* Starts in the vineyard with the uptake of potassium in the soil through the roots
  - \* After veraison starts concentrating in the fruit including tartaric acid
  - \* The formation of potassium and tartaric acid depend on factors such as soil type, rootstock, irrigation, variety, etc...

- \* Factors influencing KHT precipitation
  - \* The production of alcohol during fermentation lowers the solubility leading towards a supersaturated solution
  - \* Precipitation occurs in two stages with the formation of nuclei and the formation of a crystal lattice structure
  - The crystals have active binding sites
  - Solubility of KHT varies with temperature, pH, alcohol content, acids, ions, pigments, mannoproteins and tannins

- Factors influencing KHT precipitation
  - \* These compounds can bind the active sites of the crystals and slow or stop crystal formation
  - \* Red wines generally require longer cold stabilization times then white wines
  - \* All acid adjustments, blending and fining trials should be made before cold stabilization
  - Wines settled, clarified with bentonite and filtered will typically have faster rates

- \* The three most common methods of KHT removal
  - \* Mother Nature
  - \* Chilling
  - Contact seeding
- \* Additional methods
- \* Ion exchange
- \* Electrodialysis
- \* CMC & Mannoproteins

- Chilling for KHT removal
  - Arguably the most common method for KHT removal
  - \* Subjecting wine to temperatures of 15 to 35°F for up to several weeks
  - \* Wine should be filtered cold after cold stabilization to prevent KHT from going back into solution

- Chilling for KHT removal
  - \* Although this can be effective, fluctuations in temperature can have a significant impact on nuclei formation and slow crystal growth (Mother nature)
  - \* With increased time at lower temperatures oxygen will absorb more rapidly causing oxidation to be a concern

- Contact Seeding for KHT Removal
  - \* An effective way of cold stabilization through seeding with KHT crystals
  - \* Addition of finely ground KHT powder providing more surface area in promoting faster nuclei formation and crystal growth
  - \* Can also speed up refrigeration time

- Contact Seeding for KHT Removal
  - \* Add KHT crystals to chilled wine under a nitrogen or CO2 blanket
  - \* The addition of 2-10 lbs per 1000 gallons can reduce cold stabilization times to 3-5 days
  - \* The addition of 15-20 lbs per 1000 gallons can reduce cold stabilization times to 3-5 hours

- Contact Seeding for KHT Removal
  - \* Benefits from lower energy costs in significantly shortening stabilization period
  - Cost effectiveness needs to be looked at when choosing higher amounts of KHT
  - \* KHT crystals can be recovered, washed and used again up to 5 times before grinding

- \* CMC: Carboxymethyl Cellulose and Mannoproetein
- \* Fairly new procedures that do not require cold stabilization to work
- \* Both work on impeding further nuclei formation (CMC) or altering crystalline growth structure (mannoprotein) preventing it from occurring

- \* A few specific requirements prior to CMC or Mannoprotein use for KHT stabilization
  - \* Wine needs to be protein stable
  - \* conductivity checks essential to help determine KHT saturation temperature for correct dosage
  - \* Needs to be blend / bottle ready
    - \* No acid adjustments or additives
    - \* Was Lysozyme Used? (procedure dependent)
    - \* Pass filterability

- Other wine matrix specifics required
  - \* Check with manufacturer's requirements
- \* Combination with light cold stability procedures or lower amounts of contact seeding along with use of CMC or Mannoprotein may provide better stability results than cold stabilization itself

### KHT Laboratory Procedures

- \* Three tests for checking cold stability
  - \* Moderate refrigeration test
  - \* Severe refrigeration test
  - \* Conductivity test

#### **Activated Carbon**

- Removes color and aroma
- \* Oxidative due to large quantity of air in carbon
  - Adjust free SO<sub>2</sub> levels prior to fining
- \* Add dry Instant reaction
- \* Bentonite or PVPP counter fining recommended after carbon treatment, rack and filter
- \* Use as last resort
- \* Usage rate: 0.5 3 lbs/1000 gal (6-48 g/hL)

### Albumen

- \* Fresh or frozen egg whites (fresh more effective)
  - Colloidal in nature with positively charged surface
- \* Reduces harsh and aggressive tannins (-) charged
- \* Soften mouthfeel
- \* Added directly to barreled red wines or more easily to same wine in SS tank
- \* Appears to remove less fruit (stripping) character than gelatin fining

### Albumen

- \* Not typically used in white wines due to lack of tannin creating potential protein instability issues
- \* If egg whites are diluted with water, a pinch of salt is essential
- \* Standard practices of using from 1 8 egg whites per 60 gal barrel (2 4) being average
- \* Refer to TTB limitation on addition of working solution due to KCL and water

# Casein (Milk Protein)

- \* Potassium Caseinate: Kolorfine, Vinpur
- \* White Powder easily dispersed in wine
- \* Flocculates, settles removing colloidal particles
- \* Binds to Leucoanthocyanidins
- Great for removing brown hues/tones
- \* Removes oxidative odors

# Casein (Milk Protein)

- Reported to remove some copper as well
- \* Freshens overall fruit attributes
- \* May be used to soften tannins in red wines
- \* Usage rate .2 2 lbs/1000 gal
- \* Can also counter fine with Silica Dioxide
  - \* Kieselsol, Nalco
- \* Allow to settle, rack and filter after 2 4 hours or more depending on volume being fined

# CuSO<sub>4</sub>

- Reacts with H<sub>2</sub>S (hydrogen sulfide) which can mask varietal character at low levels and contribute rotten egg to rubber type aromas at higher concentrations
- \* Reaction forms CuS (Copper Sulfide) as a precipitate
- Comes in blue powder or liquid (CuSO<sub>4</sub> x 5 H<sub>2</sub>O)
- \* Determine lowest- effective concentration by performing bench trials
- Use 1% solution added directly to wine while mixing

# CuSO<sub>4</sub>

- \* Residual copper is a catalyst for oxidative reactions and haze formation
- \* Haze formation possible at levels > .3 ppm
- \* Use yeast, bentonite or potassium caseinate to fine excess copper
- \* TTB legal limit is 0.5 ppm (lab test)

### Gelatin

- \* Prepared from collagen structural protein derived from animal skin and bones
- \* Purchased as a granular powder or liquid
  - Exists in wine pH as (+) charged
- \* Removes astringency by reacting with tannins in red wines to soften mouthfeel
- \* Also used in white juice for removing phenols and brown color
- \* Can be used for clarification of white and red wines

### Gelatin

- \* Commercial gelatin usually rated by bloom
  - Refers to the ability to absorb water
  - \* Higher the bloom number = greater absorbing capacity
    - \* Bloom of 75 100 acceptable for wine
- \* May desire to counterfine with silica dioxide
- \* Hydrate dry gelatin by stirring 1 lbs gelatin into 2 gal of water (112 °F)
- Usage level varies by preparation and purpose
  - \* 0.2 0.8 lbs/1000 gals care taken not to over fine

# Isinglass

- Complex protein collagen derived from fish bladders
- \* Comes in pre-hydrolyzed and fibrous form of flocced Isinglass (+)
  - \* Does not require tannin to act in wine
- \* Prepare in cold water (50 °F) and keep cold
- \* Affects phenolics and aromatics especially in whites

# Isinglass

- Thought to have less stripping effect than gelatin or casein
- \* Also used as riddling aid in sparkling wine
- \* May benefit from being counter-fined with bentonite or silica to help reduce lees and speed settling
- \* Usage rate typically varies from 0.2 0.5 lbs/1000 gals
- \* Typically takes 1 2 weeks, rack and filter

## Polysaccharides

- \* Alginates extracted from brown algae bound to diatomaceous earth (Sparkalloid, Kear-Mor)
- Positively charged and work best in wine pH < 3.5</li>
- \* Primary function of enhancing clarity and filtration
  - \* Excellent clarification option when other fining agents have not worked efficiently
- \* Hot or cold mix preparations available
  - \* Hot more efficient in clarification of wines

# Polysaccharides

- \* White granular material prepared by hydration in hot water (180 °F) addition rate of 1 8 lbs/ 1000 gal
- Add hot mix slowly to wine with continued stirring for
   15 20 minutes
- \* Allow to settle from several days to a few weeks
  - \* Rack and filter
- \* Often added soon after bentonite addition as wine is being moved to cold stabilization

#### **PVPP**

- Synthetic protein like material (fine granular)
  - \* Sold as Polyclar®
- \* Complexes with phenolic and polyphenolic components by absorption collecting low molecular weight catechins (hydrogen bond formation)
- \* Removes bitter compounds along with off colors
- \* Reduces potential for browning
  - \* Helps stabilize Rosé / Blush wines

#### **PVPP**

- \* Useful in helping to settle carbon treatments
- \* Usage rate ranges from 0.5 6 lbs/1000 gals
- Make 5 10% solution in wine or water and add directly to wine while stirring for approximately 30 minutes
- \* Settle, rack and must filter
- \* TTB legal limit of 6 lbs/1000 gallons

### Silica Dioxide

- Silica Dioxide silica gel and Kieselsol
- \* Use as a substitute for tannic acid addition in gelatin fining to initiate flocculation and settling of gelatin and protein add prior to gelatin
- \* More commonly used for clarification in protein fining treatments (bentonite)

### Silica Dioxide

- \* Limited shelf life of less then 2 years
- Dosage rate rarely exceeds 10 lbs/1000 gals
- \* Rack and filter all silica dioxide out of wine
- \* TTB legal limit equivalent of 20 lbs colloidal silicon dioxide at a 30% concentration /1000 gals

#### Yeast

- Reported to remove some copper and iron
- \* Reduces brown oxidative hues
- \* Can reverse some oxidation in aroma and on palate
  - \* Known to "freshen" up a wine
- Also indicated to remove herbaceousness and other off odors such as ethyl acetate
- \* Removes astringent tannins (especially oak tannin)

#### Yeast

- May use rehydrated yeast or freeze dried added directly to wine
  - \* Yeast high in mannoproteins good choice (D254)
- \* Usage rate ranges from 1.5 8 lbs/1000 gals
  - Average optimum concentration of 2-4 lbs/1000 gals
- \* Monitor effect, rack and filter once noticeable changes have been diagnosed
- \* May take several days to a couple of weeks

# Additives

#### Additives

- \* Acids (tartaric, malic & citric)
- Deacidifying agents (KHCO<sub>3</sub> & CaCO<sub>3</sub>)
- \* Tannins
- \* Oak
- \* Sugar
- \* Concentrates

#### **Acid Additions**

- \* Adjust acid perception on palate
- \* Adjust pH (important enological factor)
- \* Effects perception of tannin and astringency
- Effects cold stability
- \* Tartaric acid most commonly used
- \* Citric acid can be utilized at lower levels for enhanced fruit structure in aged white wines

#### Tartaric Acid Addition

- \* Preferred for addition to must over malic and citric acid.
- \* Tartaric acid is a stronger acid.
- \* Lowers the pH of must during fermentation.
- \* Excess citric acid may effect organoleptic profile.
- \* Malic and citric acid can be metabolically utilized by microorganisms.

#### Cool Climate Viticulture Areas

\* Excess acidity at harvest may occur in cool climate viticultural areas requiring deacidification of the must or juice.

## Excess Harvest Acidity

- \* Common for cool climate viticultural areas.
- \* Viticultural practices over cropping, unorganized spray program, etc...
- \* Vine vigor high vigorous vines typically produce higher acidities.
- \* Excess acidity may require deacidification.

#### Methods of Deacidification

- \* Amelioration
- Chemical neutralization and precipitation of tartrates
- \* Choosing an acid reducing yeast strain
- Anion exchange
- \* Performing a Malolactic Fermentation
- \* Blending
- Sugar Addition

# **Enological Tannins**

- \* Many new tannins available on the market today with a broad range of action
  - Fermentation, cellaring and finishing
  - Especially good for hybrid red wines
- \* Can enhance mouthfeel, lower perceived astringency, help assist protein stability and aid in color extraction
- \* Can also be used with gelatin to enhance clarification
- \* Follow manufacturers suggested dosage rates

### Oak

- \* Barrels All types (species), options, toast levels and producer's available
- \* A plethora of oak alternatives and producer's on the market today with good results
- \* Enhance mouthfeel, provide subtle nuances and increase complexity to varietal aroma's and blend characteristics
  - \* Please do not over oak!!!
    - \* It takes expertise to integrate varietal character and oak nuance's correctly together

#### Concentrates

- Can add flavor, sweetness and enhance mouthfeel
- Good for fine tuning wines
- \* Also utilize juice reserve for these purposes
- \* Watch for Zygosaccharomyces in fruit concentrates which normal SO<sub>2</sub> levels are not effective
- \* TTB regulations indicate only using "like" fruit concentrates except formula wine

## Sugar

- \* The power of a little sugar in finishing a dry wine goes along way!
- \* Add up to 0.5% residual sugar in balancing acid profile, smoothing out slightly harsh tannins and lowering perceived astringency
- \* Laboratory trials are critical in determining optimum concentration
- \* May need to follow sterile filtration protocols

# Cellar Applications

- \* Commercial companies such as Scott Laboratories have nice laboratory size fining trial packets available with good directions for cellar applications
- \* Perform laboratory trials and cellar applications the same: Fining agent, preparation methods, temperature, mixing and timing are all critical
- \* The difference between mixing with a blender in the lab and a paddle mixer in the cellar results in over fining

# Cellar Applications

- \* Effectiveness of fining can be reduced by 50% due to improper preparation methods
- \* Entire volume of wine must come into contact with fining agent as it is being added
- \* Limit contact time to minimum amount required to perform purpose efficiently
- \* Proteinaceous fining agents work better at colder temperatures (except bentonite)

#### THANK YOU!

**Todd Steiner** 

Enology Outreach Program Manager & Outreach Specialist

OSU/OARDC

Dept. Of Horticulture & Crop Science

Phone: (330) 263-3881

E-mail: steiner.4@osu.edu



